
 
 

Author & Date: 
	
  
Matt Schuchhardt 1/7/11 
	
  
Topic/Concept: 
	
  
Introduction to programming, programming languages 
	
  
Type of Activity: 
	
  
Lecture + small groups + demonstrations 
	
  
Prerequisite knowledge: 
	
  
None; an open mind and a willingness to learn 
	
  
Resources required: 
	
  
Display computer, computers for students to work on w/ Python installed 
	
  
Tetris source code 
	
  
How to Think Like a Computer Scientist: 
http://openbookproject.net/thinkcs/python/english2e/ch01.html (not used directly in lesson, but 
helpful for both students and teachers) 
	
  
Objectives: 
	
  
Students will understand what a computer program is 
	
  
Students will understand the role of different kinds of computer languages 

Students will understand that no computer language is the best for every situation 

Common Misconceptions: 

Programming is hard 
	
  
Only certain people can be computer programmers 
	
  
Detailed Description of Activity: 
	
  
Introduce students to programming 
	
  
First ask the students if they play video games (just to gauge interest, spark excitement), ask if 
the students if they have ever played Tetris. 



	
  
Play a 30-second demonstration of Tetris on the display computer (to give a quick refresher on 
how the game works, different elements that the game has in it). Stress the different aspects that 
the game has (score keeping, rotating blocks, clearing lines out, etc.) The attached Tetris.zip 
should run as a Python program (just use another Tetris game if you can't get it to run; as long as 
you have the source code, you should be well-equipped enough to do the lesson). 
	
  
Break the students into pairs/groups for two minutes, and have them list as many of the 
program's attributes/components that they can (for example: the game keeps score; the game has 
a timer; the game clears a line every time it's full; the game sends a different random block every 
time a previous one is placed). It is important in programming to think modularly and not 
monolithically when programming, so make them get as specific as possible with the various 
functions of the game. 
	
  
Show them the source code for the Tetris game: start with showing the whole program’s code, 
but then explain that none of this is over their heads: they just haven't learned this specific 
language yet. Explain that learning the language of computers is just like learning a different 
language: it seems difficult when you first start, but the more comfortable you are with the new 
language, the more useful it becomes. 
	
  
From the lists that they created as groups, start identifying the various components in the source 
code (e.g., find the code which rotates a block, etc.) (this will require some knowledge of the 
source code, so be sure to go over this in advance). Show that although they may not understand 
the code's language, just by reading through the function names can give them a good idea how a 
program works. Make this as absolutely basic as you can, but keep it interesting; you don't want 
to scare them (yet!). 
	
  
What a computer program does 
	
  
One of the biggest obstacles that I encountered while teaching this was that the students didn't 
actually know what programming was: they thought it was just like using another computer 
program (like Word or Excel), and not that they were actually writing their own programs. 
	
  
(This is a quick, simplified version of HTTLACS 1.1; this is a great reference!). 
	
  
Describe programs as a black box: inputs, calculations, outputs. All that a program language is a 
list of simple calculations which take an input, somehow use that input, and produce an output. 
	
  
Have a discussion on what inputs, outputs, and calculations are. It can be abstract as in data -> 
calculations -> output, but feel free to get very concrete with what input and outputs are: for 
example, explain that even a toaster has a very small computer (microcontroller) inside of them: 
the toaster takes the button press to start toasting as an input, it calculates how long to toast the 
bread, and then it produces some output (by turning on the coils for a certain amount of time). 
There are millions of examples like this. 
	
  
Again, stress that programming creates programs like Word and Excel (and Tetris!): you are 



specifically telling the computer to do calculations, not simply using it as a tool any more. 
	
  
Computers are DUMB: be smarter than the computer! It will do exactly what you tell it to (as 
opposed to simply using a computer program), which can be good, but can also make it hard 
sometimes. Computers can run millions of calculations every second: they DUMB and FAST: 
they can (simply put) only do basic arithmetic, but they do these so fast, that you can build very 
complex calculations by using millions of simpler calculations. You are just telling the computer 
how to do these simple calculations, and how to store and process that data. 
	
  
You may spend some time here discussing the wide variety of computers that exist: anything 
with a blinking light that runs on electricity has some kind of a computer inside of it: alarm 
clocks, toasters, Mp3 players, etc., etc., etc.... 
	
  
Introduce students to different programming languages 
	
  
Ask students to name off some sorts of things that had a program written for them at one point in 
time, identify languages 

Main point: No programming language is the ‘best’: each language is good at different things. 

Php: an internet programming language. Google, Facebook, and Amazon all are programmed at 
least partially in Php. Very good language to start with. 
	
  
.NET: Microsoft’s main programming language. Windows 7 applications and Xbox360 games 
are programmed in this language. 

Python: good at quickly doing calculations on a computer, relatively fast to program in. 

Mindstorms: Very good at programming lego robots (my class dealt with these previously) 

Again, severely stress that although these languages are good at some things, they may not be 
good at others. It's not important at all to remember the specifics of these languages, but make 
them realize that no single language is 'best': just good for different applications. You wouldn't 
program a computer in mindstorms, and it would be very difficult to program a lego robot in 
Php. 
	
  
Rubrick 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
Concept of 
Programming 

	
  
	
  

Emerging 
Understanding 

1 
Think that 
programming is just 
like using any other 
computer program, 
and that programming 
is just another tool 

	
  
	
  

Working Knowledge 
2 

	
  
	
  
Simply understand that 
programming is more 
powerful than 
using computer tools 

	
  
	
  

Concept Mastery 
3 

	
  
Fully grasp the concept that 
programming is the computer 
language used to create 
other computer programs, and 
can be as powerful as you 
need it to be 



	
  
	
  
	
  
	
  
Role of 
Computers 

	
  
	
  
	
  
	
  
	
  
Variety of 
Computers 

	
  
	
  
	
  
	
  
	
  
	
  
Source Code 
Understanding 

	
  
	
  
	
  
Think that computers 
are inherently 'smarter' 
than humans 
	
  
	
  
	
  
	
  
Computers always 
have a keyboard, 
monitor, and mouse 
	
  
	
  
When analyzing the 
components of Tetris, 
identifies very broad, 
non-specific aspects of 
the game (a Tetris 
game lets you play 

	
  
	
  
	
  
	
  
Understand simply that 
computers are very fast 
	
  
	
  
	
  
	
  
Computers are very 
common, but don't 
believe that they are as 
widespread as they are 
Description of the 
individual components 
are somewhat more 
specific, but the 
components are still 
very monolithic 

Understand that computers 
merely run simple 
calculations very quickly, 
(not inherently smart), 
and that a good programmer 
is able to be smarter than the 
computer 
Computers are 
EVERYWHERE: in your car, 
bedroom, classroom, even 
bathroom. 
	
  
Descriptions of the 
components of Tetris are 
extremely specific, and 
understand how the 
components relate to the 
source code's representation 

	
  

Tetris) (scoreboard, timer, game of them (high-level overview) window). 
	
  
	
  
	
  
	
  
	
  
Programming 
Languages 

	
  
	
  
	
  
	
  
	
  

	
  	
  	
  	
  	
  

	
  
	
  
	
  
	
  
	
  
There is a 'best' 
computer language 

	
  
Some languages are 
good at certain things, 
but don't fully grasp the 
fact that 
different languages exist 
because of the wide 
variety of programming 
applications 

Understand that due to the 
wide variety of uses that 
computers have, it is 
necessary 
to be able to program in a 
wide variety of different 
languages, and each language 
has its own intended 
application. 


